skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Celik, Ilke"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available May 30, 2026
  2. Free, publicly-accessible full text available November 1, 2025
  3. Free, publicly-accessible full text available December 2, 2025
  4. Abstract As we increasingly understand the impact that land management intensification has on local and global climate, the call for nature-based solutions (NbS) in agroecosystems has expanded. Moreover, the pressing need to determine when and where NbS should be used raises challenges to socioecological data integration as we overcome spatiotemporal resolutions. Natural and working lands is an effort promoting NbS, particularly emissions reduction and carbon stock maintenance in forests. To overcome the spatiotemporal limitation, we integrated life cycle assessments (LCA), an ecological carbon stock model, and a land cover land use change model to synthesize rates of global warming potential (GWP) within a fine-scale geographic area (30 m). We scaled National Agricultural Statistic Survey land management data to National Land Cover Data cropland extents to assess GWP of cropland management over time and among management units (i.e. counties and production systems). We found that cropland extent alone was not indicative of GWP emissions; rather, rates of management intensity, such as energy and fertilizer use, are greater indicators of anthropogenic GWP. We found production processes for fuel and fertilizers contributed 51.93% of GWP, where 33.58% GWP was estimated from N2O emissions after fertilization, and only 13.31% GWP was due to energy consumption by field equipment. This demonstrates that upstream processes in LCA should be considered in NbS with the relative contribution of fertilization to GWP. Additionally, while land cover change had minimal GWP effect, urbanization will replace croplands and forests where NbS are implemented. Fine-scale landscape variations are essential for NbS to identify, as they accumulate within regional and global estimates. As such, this study demonstrates the capability to harness both LCA and fine-resolution imagery for applications in spatiotemporal and socioecological research towards identifying and monitoring NbS. 
    more » « less
  5. Perovskite solar cells integrated with lower dimensional materials can outperform the environmental performance of conventional solar photovoltaic technologies such as crystalline silicon, CIGS, and CdTe with shorter lifetimes. 
    more » « less
  6. The transportation industry has led efforts to fight climate change and reduce air pollution. Autonomous electric vehicles (A-EVs) that use artificial intelligence, next-generation batteries, etc., are predicted to replace conventional internal combustion engine vehicles (ICEVs) and electric vehicles (EVs) in the coming years. In this study, we performed a life cycle assessment to analyze A-EVs and compare their impacts with those from EV and ICEV systems. The scope of the analysis consists of the manufacturing and use phases, and a functional unit of 150,000 miles·passenger was chosen for the assessment. Our results on the impacts from the manufacturing phase of the analyzed systems show that the A-EV systems have higher impacts than other transportation systems in the majority of the impacts categories analyzed (e.g., global warming potential, ozone depletion, human toxicity-cancer) and, on average, EV systems were found to be the slightly more environmentally friendly than ICEV systems. The high impacts in A-EV are due to additional components such as cameras, sonar, and radar. In comparing the impacts from the use phase, we also analyzed the impact of automation and found that the use phase impacts of A-EVs outperform EV and ICEV in many aspects, including global warming potential, acidification, and smog formation. To interpret the results better, we also investigated the impacts of electricity grids on the use phase impact of alternative transportation options for three representative countries with different combinations of renewable and conventional primary energy resources such as hydroelectric, nuclear, and coal. The results revealed that A-EVs used in regions that have hydropower-based electric mix become the most environmentally friendly transportation option than others. 
    more » « less
  7. Tandem photovoltaic (PV) cells with higher efficiency limits than current market dominated crystalline silicon PV devices are poised to be the next generation of solar cells. In this study we focus on analysis of perovskite/Cu(In x Ga 1-x )Se 2 tandem solar cells in the context of real-world conditions. Using material properties and the most recently updated atmospheric data we simulate the device energy yield for locations with different climate conditions. We use the resultant data in calculating module levelized cost and analyze the conditions under which using different forms of tracking become the cost-effective approach at each location. 
    more » « less